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1. I n t r o d u c t i o n  

The Dirac operator D acting on spinor fields defined over a two-dimensional, compact, 

oriented Riemannian manifold (M 2 , g) with a fixed spin structure has a non-trivial kernel in 

general. Therefore, lower bounds for the eigenvalues of D are not known in case the genus 

of M 2 is positive. The genus zero case is an exceptional one" using the uniformization 

theorem for simply connected Riemann surfaces, we conclude that any metric g on S 2 is 

conformally equivalent to the standard metric go of S 2. Since the dimension of the space 

of all harmonic spinors depends on the conformal structure only, it turns out that, for any 
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metric g on S 2, there are no harmonic spinors. This observation yields a lower bound for 

the first eigenvalue ~2 of  D 2 proved by Lott and Bar: the inequality 

4zr < )2  

vol(S 2, g) - 

holds for any Riemannian metric on S 2 (see [2,12]). 

On the other hand, several upper bounds for )~ depending on different geometric data are 

known. Intrinsic upper bounds involving the injectivity radius and the Gaussian curvature 

have been obtained by Baum [6] and Bar [3]. In case the Riemannian surface (M 2, g) is 

isometrically immersed into the three-dimensional Euclidean space ~3, one has extrinsic 

upper bounds depending on the C°-norm of the principal curvatures xl, t¢2 of  the surface 

(see [6]). Denote by H = (xl + x2)/2 the mean curvature. Then the following estimate for 

)2 depending on the L2-norm of the mean curvature H is well known (see [4,7]): 

fM 2 H 2 dM 2 
z 2 ___ 

voI(M 2, g) 

In the present paper we will prove stronger extrinsic upper bounds for )2 in case of  an 

isometrically immersed surface M 2 ~-+ E3 of  arbritrary genus as well as an intrinsic upper 

bound for genus zero and genus one. Moreover, we will compare the different estimates of  

the eigenvalue of  the Dirac operator for special families of  metrics. 

The extrinsic upper bound in case of  a surface isometrically immersed into R 3 depends 

on a smooth function f : M 2 ~ ~. 

Theorem 1. The first eigenvalue ) 2 o f  the square o f  the Dirac operator on a surface 
M 2 ~ ~3 is bounded by 

fM 2 H2 f 2 dM 2 -+- fM 2 Igrad f l 2 d M 2  

fM 2 f 2  dM 2 

where f : M 2 --+ R is a smooth function. 

Suppose now that (M 2, g) is a two-dimensional Riemannian manifold diffeomorphic to 
S 2. Denote by go the standard metric of  S 2. Then there exists a uniformization map, i.e., a 
conformal diffeomorphism ¢) : S 2 --+ M 2. Let us introduce the function he  : S 2 ~ ~ by 

the formula 

~*(g)  = h4 go. 

The set U ( S  2, M 2) of  all uniformization maps preserving the orientation can be para- 

metrized by the elements of  the connected component of  the group of  all conformal diffeo- 
morphisms of  S 2, i .e.,/g(S 2, M 2) ~, SL(2,  C). We introduce a new invariant 6Dir(M2, g) 

defined in a similar way as the conformal volume of  a Riemann surface (see [11]): 
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~Dir(M2' g ) i n f {  s~ Igrad(h~)12 / = ~ dS 2" ~ EH(S 2,M 2) . 
ha, 

The vector field grad(h~) is the gradient of the function h~ 
the standard metric of S 2. 

S 2 ~ ~ with respect to 

Theorem 2. Let (M 2, g) be a two-dimensional Riemannian manifold diffeomorphic to the 
sphere S 2. Then 

4re 6Dir (M2, g) 
< 

0 _< X~ vol (M 2, g) vol (M 2, g) 

holds. 

The same method applies to Riemannian metrics on the two-dimensional toms T 2. The 
spin structures of T e are described by pairs (el, e2) of numbers ei = 0, 1, the trivial spin 
structure corresponding to the pair (el, e2) = (0, 0). Let F be a lattice in I~2 with basis 
1)1,1)2 and denote by 1)~, 1)~ the dual basis of the dual lattice F*. We will compare the flat 
metric go on the toms T 2 = ~2/1-" to a conformally equivalent metric g = h4g,,. 

Theorem 3. Let (M 2, g) be a two-dimensional Riemannian manifold conformally equiva- 

lent to the flat torus T 2 and equipped with the trivial spin structure. Then the Dirac operator 
on (M 2, g) has a two-dimensional kernel. Moreover, the first positive eigenvalue )~(g) of 
D 2 on (M 2, g) is bounded by 

fT: {,k~(go) + (4/h2)lgrad (h)12}(l/h 6) dT 2 
)v~ (g) < 

fT2(1/h 2) dT 2 

Theorem 4. Let (M 2, g) be a two-dimensional Riemannian manifold confi?rmally equiva- 

lent to the flat torus T 2. In case the spin structure (el, e2) 7 ~ (0, 0) is non-trivial, the Dirac 
operator has a trivial kernel and )~2 ( D ) is bounded by 

)v2(D) _< 7/.2 lel1)~' "1- 621) 2.~1- fr2 (l/h2) dr2 
fT2 h 2 d T  2 

Moreover, the inequality 

f Igrad (h)l 2 )~l(D)v°l(M2, g) < )v2(go)v°l(T2, go) + h 2 dT2 

T2 

with 

)vl(go) VO1 (T 2, go) = rr2 

holds. 

I< vT + e2v~l 2 

V/[V~12lv~l 2 - (v~, v2*) 
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We shall apply the previous results to two families of  surfaces of  special interest. Let us 

first consider the ellipsoid 

E(a )=  ( x , y , z ) ~ N 3 : x 2 + y 2 + ~ =  1 . 

A calculation of the volume yields that the lower bound 47r/vol (E(a)) for )~(a)  is a 

monotone decreasing function of the parameter a: 

4~ 4~ 
lim -- 2, lira - 0. 
a~0  vol (E(a)) a~oc vol (E(a)) 

Using the upper bounds for ~.12(a) already known, we cannot control the behaviour of  

~.~(a) for small or large values of  the parameter a. For example, the L2-bound given by the 

mean curvature H has the following limits: 

lim fE(a) H2 d E ( a )  fE(a) H2 dE(a )  1 
= <x~, l i m  = - .  

~ 0  vol (E(a)) a ~  vol (E(a)) 2 

Now, a combination of our stronger extrinsic and intrinsic upper bounds for the first 

eigenvalue of the Dirac operator yields the following improvement for the ellipsoid: 

T h e o r e m  5. The first eigenvalue )~ of D 2 on the ellipsoid E(a) satisfies 
(1) 2 < l ima~o L~(a) < 3 -4- In 2 ~ 2.2; 

1 (2) lim,-+ook2(a) < ~. 

In the last part of  this paper we apply our estimates to a tube of radius r around a circle of  
curvature x, i.e., a "round" toms. Parametrizing the spin structure as before, the inequalities 

for )~2(x, r) allow us to prove, in particular, 

lim )~(x,  r) vol (x, r)  = lim )~2(K, r) vol (x, r) = 0 
r---~0 to--+0 

for the spin structure (el,  e2) = (1, 0) and 

o 
lim k2(K, r) vol (x, r)  < zr" 

rK--+ 1 

for the spin structure (el,  e2) = (0, 1) (for these two spin structures, no upper bounds were 
available before). However, they turn out to yield no improvement for the induced spin 
structure (el,  e2) = (1, 1); thus, in this case, the classical bound involving the integral over 
H 2 divided by the volume is still the best one available. 

For a conformal change of the Riemannian metric g = h4go on a surface, one easily 
proves the following C°-estimate for the first non-vanishing eigenvalue k 2 (g) of  the Dirac 
operator (see for example [1, Theorem 4.3.1]): 

L21(g°.___~ ) < )~21(g ) < )~2(g o) 
h4ax - - -  4 hmin 
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Table 1 

el = 0---  e2 g-1 = 1 = e 2  el = l,  e2 = 0  g-I = 0 ,  e2 = 1 

l i m r ~ o  X~(r, x)  x 2 oo /K2  

l i m x ~ o  )~ ~ (r, x) 0 l / 4 r  2 0 l / 4r 2 
9 

l i m , . ~ 0  )~T vol (r, x)  0 oe 0 oo 

obtains the asymptotic behaviour for )~(g)  on a tube of radius r around Altogether, one 
a circle with curvature x as shown in Table 1. 

2. Extrinsic upper bounds 

Let M 2 be a compact, oriented surface isometrically immersed into the Euclidean space 

~3 and denote by N(m) the unit normal vector of M 2 at the point m E M 2. The restriction 

~lM 2 of a spinor field • defined on ~3 is a spinor field on the surface M 2. Let • be a 

parallel spinor on R 3. Then the spinor field 

~p* = l (1  - i)@lM2 + ½(--1 + i ) N -  ~lg2  

is of  constant length on M 2 and satisfies the two-dimensional Dirac equation 

D(tp*) = H~p*, 

where H denotes the mean curvature of  the surface (see [10]). Thus, starting with two 

parallel spinors ~ l ,  ~2 with 

Iq011=lq~21-- 1 and (4~1,4~2)=0,  

we obtain two solutions ~o~, ~0~ of the Dirac equation 

D(qg*)=Hqg~*, ~ = 1 , 2  

such that [~o~(m)l = I~o~(m)l = 1 and (~0~(m), ~p~(m)) = 0 holds at any point m ~ M z. 
Given a real-valued function f : M 2 --+ ~ we consider the spinor field 

= f~o~. 

After applying the Dirac operator to ~p: 

D0P)  = H ~  + grad ( f ) .  ~o~, 

a direct calculation yields the formula 

JD(7*)[ 2 = H 2 f  2 + Igrad ( f ) l  2. 

In this case the Rayleigh quotient coincides with 

fM 2 I O ( l ~ ) l  2 f M  2 H Z f Z d m  2 + fMzlgrad(f)lZdM 2 

fMe I~l 2 fM e dM 2 

Finally, we have proved Theorem 1. 
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3. Intrinsic  upper  bounds  for a surface d i f feomorphic  to S 2 or T 2 

Let (M e, go) be a compact, oriented two-dimensional Riemannian spin manifold and 
denote by Do its Dirac operator. Moreover, consider a conformally equivalent metric 

g = h4go. 

The corresponding Dirac operator D is related with Do by the formula (see [5]): 

1 grad (h) 
D = -~Do + h ~  

Consequently, the equation D0P) = )~P is equivalent to 

1 
OoOP) = )~h2ap - ~grad(h) • ap. 

For any spinor field lp we compute the L2-norm of D(Tt): 

f lDOp)12dM 2 
M 2 

=f{IDoOP)12+ 
Igrad (h)l 2 2 } 

h2 17el 2 + Re(grad(h) .  7t, Oo(Tt)) dM,2,. 

M 2 

Suppose now that ~p is an eigenspinor of the Dirac operator Do with eigenvalue Zi. Then 
Re (grad (h) • ~, DoOP)) = 0 and we obtain the formula 

f lD(T t )12dM2=f{ )~2+ 'grad(h)12h2 ] I~Pl 2 dM 2. 
J 

M 2 M 2 

Hence, the first eigenvalue ~2 (D) of the Dirac operator is bounded by 

)~12(D) < inf inf fM2 {Z~ + (Igrad (h)12/h2)}lTt12 dM 2 
z, oo(~p)=z,V~ fM 2 17tl2h4dM~ 

Let us now discuss the special case that (M 2, go) is the two-dimensional sphere with its 
standard metric and g a conformally equivalent metric. The first eigenvalue of the Dirac 
operator on S 2 is )~1 = 1. Moreover, the corresponding eigenspinor ~p is a real Killing 
spinor satisfying the differential equation 

Vx(~) = -½x.  ¢, x ~ T(S2). 

In particular, the length of ~ is constant and we obtain the inequality 

4rr fs  2 (Igrad (h)12/h 2) dS 2 
Z2(D) < + 

vol (S 2, g) vol (S 2, g) 
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Starting with a surface (M 2, g) diffeomorphic to S 2, the latter inequality holds for any 
uniformization, i.e., for any conformal diffeomorphism cO • S 2 --+ M 2 such that cO* (g) = 

h4go. In particular, we have proved Theorem 2. 

R e m a r k  6. For any conformal diffeomorphism qJ e SL(2, C) of the two-dimensional 
sphere S 2 we denote by hq~ : S 2 --+ • the function defined by the equation 

~*(g,,) = h4 g,,. 

Let f : S 2 ~ R be a smooth function. Then we define the number 

~ , D i r ( f ) = i n f l . [ l g r a d ( f o ~ ) + g r a d ( l o g ( t T q , ) ) 1 2 d S 2 : ~ c S L ( 2 ,  C) 

S 2 M 2 cO* = h~g,,, have In case of a uniformization cO : ~ such that (g) we 

f 'grad(hq~)[2 f 75- dS2 = Igrad(l°g(h~))[ 2 dS2 
h8 

S 2 S 2 

and, consequently, for the quantiO' 8Di~(M 2, g) defined in Section 1, the relation 

1)Jr ( / l / f2 8Dir(1og(h~)). , , . .-  , g )  = 

We now consider the case that (M 2, g) is the flat torus T 2 = (]~2/F, go) given by a lattice 

F in •2 with trivial spin structure. In this case there are two parallel spinor fields 9)+ and 

~p of constant length and the first non-trivial eigenvalue k~ (go) of the square of  the Dirac 
D,  operator on T 2 is 

k~(g,,) = 47r2 min{lv*12:0 ~ v* c F}, 

where F* denotes the dual lattice (see [8]). Suppose now that g is a metric on M 2 confor- 
mally equivalent to go, g = h4go. Then the kernel of the corresponding Dirac operator is 

again two-dimensional and spanned by the spinor fields (1/h)cp +, (1/h)~0-.  Fix a spinor 
field ~ such that D,,OP) = kj (go)gr. Then the length of lp is constant, i.e.. Igrl -- 1. The 
spinor field ~p* = ~p/h 3 is orthogonal to the kernel of the Dirac operator D with respect to 

the L2-norm of the metric g. Indeed, we have 

M 2 T 2 

_ 1 f (Do(~r), go± ) d T  2 
Z1 (g,,) 

T2 

i f  -- ZI (g,,) (gr Do(~pe~)) dT 2 = O. 

T 2 
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This observation yields the inequality 

~.~(g) < fM2 I O ( l ~ * ) l z d m  2 

f M  2 I ~ *  I 2 d i n 2  

for the first non-trivial eigenvalue of D 2 on (M 2, g). Moreover, we have 

and 

1 4 1 f[Tt*lZdMZ=f~h dT2=f-~dT 2 
M 2 T 2 T 2 

f [D(aP*)l dM 2 

M 2 

Igrad (h)l 2 • 2 Do(~*))} dT 2. = f {IDo0P*)I2 + ~ IWI + 2Re(grad(h)~*'h 

T 2 

Since the equation 

Do(h3~ *) = Do(~) = )q (go)~ = )~l(go)h3~ * 

can be rewritten in the form 

3 OoOP*) = )~1 (go)~P* - -~ grad (h)~p*, 

we obtain the formulas 

6 
2 (grad (h)~p*, DoOP*)) - / ~  [grad (h)[2[~*l ~Re = 

and 

grad h ,21 ,'2 
Altogether, this implies 

f ,o~**,,~M~= f { ~ o 3 + ~  Igrad(h)[2l-~dT 2 
M 2 T 2 

and it proves Theorem 3, in particular. 
Let us now consider the case that the spin structure on (M 2, g) ~ T 2 is non-trivial. Then 

the Dirac operator has no kernel and the eigenspinors of the Dirac operator Do on T 2 are 
again of constant length (see [8]). Then our method provides the inequality 

)~2(go) vol (T 2, go) fT2(lgrad(h)12/h 2) dT 2 
Z (g) _< + 

vol (M e, g) vol (M e, g) 
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The Gaussian curvature G of  the metric g is given by 

h4G = --2A(log(h)) ,  

where A denotes the Laplacian with respect to the fiat metric. We integrate this latter 

equation: 

f f f 'grad(h)'2 G • log(h) dM 2 = haG • log(h) dT 2 = - 2  h2 dT 2, 

M 2 T 2 T 2 

thus obtaining 

L2(g) < X2(go)v°l(T2, g o) 1 fM2G.log(h)dM 2 
-- vo1 (M 2, g) 2 vol (M 2, g) 

where G denotes the Gaussian curvature of  (M 2, g). 

However, we can use a more delicate comparison for the Dirac operator depending on the 

spin structure (el, e2). Consider the dual lattice F* with basis v~, v~ as well as the 1-form 

o) = rri(dx, d y ) .  (elVt + e2v~). 

The Dirac operator D ~1 ,E2) corresponding to the spin structure (el, e2) on (M 2, g) is related 

to the Dirac operator D for the trivial spin structure by 

D(~t,~2) = D + it, 

where the vector field t is dual with respect to the metric g to the 1-form w (see [8]). Let ~p+ 

be the parallel spinor field with respect to the fiat metric. Then ~ = ( 1/h)  q9 + is a harmonic 

spinor on (M 2, g), i.e., D0P)  = 0. Therefore, we obtain 

IO~l,e2)(~)12 = [tlgel~Pl 2 = Io~121~Pl 2. 

In dimension n = 2 the L2-1ength of  a 1-form depends only on the conformal structure, 

i.e., if the metrics g = h4go and go are conformally equivalent, then for any l-form co the 

formula 

140[~ d M 2  2 2 = IOAg,, dM~, 

holds. Now we integrate: 

/ ,D~,.E2)(~)I2 dM2 = f 1 2  _~l~OlgodZ2=yr2l~lV~ +e2v~12 f 1 2 ~ d T  . 
M 2 T 2 T 2 

On the other hand, we have 

f l c z l 2 d M 2 = f ~ h 4 d T 2 = f h 2 d T 2 ;  
M 2 T 2 T 2 
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finally, we obtain 

fM 2 ID(~'l'e2)(~)lZ d m  2 7r2181v~ + 82V 2 ~___ *12 fT2(1 /h2)  d T  2 

fM 2 IlPl 2 d M 2  fr2 h2 d T 2  

This equality finishes the proof of  Theorem 4. 

4. The first eigenvalue of the Dirac operator on the ellipsoid with S 1 -symmetry 

We now discuss the first eigenvalue of the Dirac operator on the ellipsoid E(a) C R 3 
with S 1-symmetry defined by the equation 

Z 2 
x2 + y 2  + ~ = 1. 

For the calculations we will use the following convenient parametrization of E(a) :  

x --- v/1 - w2 cos~o, y = v/1 - w2 sincp, z = a . w ,  

where the parameters (w, ~0) are restricted to the intervals - 1 < w < 1, 0 < q9 < 27r. For 

brevity we introduce the function 

A a ( W )  = (1 - a 2 ) w  2 + a  2. 

Then the Riemannian metric ds 2, the Gaussian curvature G, the mean curvature H and the 

volume form dE(a)  are given by the formulas: 
(1) dsa 2 = (Aa(w)/(1 - t o 2 ) ) d w  2 -k- (1 - u) 2) d~o2; 
(2) H 2 = (a2/4)Aa3(W){Aa(W) + 1}2; 

(3) G = a2AaZ(w); 

(4) dE(a)  = A)/Z(w)dw/x  d~o. 

4.1. Evaluation of the extrinsic upper bounds 

We shall use the extrinsic upper bound for the eigenvalue of  the Dirac operator for the 
family of  functions f/~ defined by 

1 fe = A~a(W), fl > ~" 

Notice that f~ is just the flth power of  (a multiple of) 1 /4 'G.  The length of the gradient of  
the function f~ on the ellipsoid is given by 
(5) Igrad (f~)l 2 = 4/32(1 - a2)2A2 f l -3 (w)w2(1  -- w2).  

Let us first discuss the case that the parameter a < 1 is small. Then a 2 _< A , (w)  _< 1 holds 
and we can estimate the first integral appearing in Theorem 1: 

1 

0 < H2f~ dE(a)  < 4tea 2 za a tw) dw. 

E(a) 0 
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The latter integral may be rewritten using the transformation ~ - a 2 w -- ax, thus 
yielding 

( l / a ) ~  

0 < H2f~dE(a) < 4 J r f f l  - a  2 (1 +x2)2~-5/2dx. 
E(a) 0 

I We shall prove that for all/3 > ~, 

lim f H2f~dE(a)= O. 
a-+0 

E(a) 

limff dE(a)=lim4 [a b+,/2¢ )d =4 rf 4b+,d = 2Jr. 
. ~ o  a~o d 23 + I 

E(a) 0 (I 

Finally, we investigate the integral 

1 

f Igrad(f3)12dE(a)=16zr(1-a2)2fl2 f A23.5/2(w)w2(1-w2)dw 
E(a) 0 

Using the Lebesgue theorem (/3 > / )  we conclude 

I 

f f lim Igrad(f~)l 2 d E ( a )  = 16rr/3 2 W43-3(1  --  w a) dw = 4rr 2/3---~" 
a--+0 --  

E(a) 0 

Since the first eigenvalue )~(a)  of  the square of  the Dirac operator on E(a) is bounded by 

the expression 

X2(a) < fE(a) H2 f~ dE(a )  + fe(a)Igrad(f/~)12 d E ( a ) ,  

fE(a) f~ dE(a )  

we obtain 

1-i-~m)~(a) < 4yrfl. (2/3 + 1) = 2fl(2fl_ + 1) 
. ~ o  (2/3 - 1)2yr 2fl - 1 

Indeed, in case/3 > 45-, we have A2~-5/e(w) < 1 and the result follows immediately. 
5 If  3 < fl < ~ we use the inequality a 2 < Aa(w), i.e., A2t3-5/2(w) < a aft-5. 

1 43_. 3 and hence, Finally, consider the case that ~ < /3 < Then one has 1 < 25- - 2/3 < ~, 
(1 + x e) _< (1 + x2) 5/2-et~, which implies 

(1/a)~/I--a 2 

f (1 + X2) 2fi-5/2 dx < - -  < cc 
- 1 + x  2 

o 0 

and finishes the argument. In a similar way we show 

I 1 
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in the limit a ~ 0. The latter inequality holds for any/3 > 1. For/3 = 1 we obtain, for 

example, the inequality 

l im)2  (a) < 6 
a - - + 0  

and the optimal parameter/3 = 1/2 + 1/~/2 yields the estimate 

lim)~12(a) < 3 + 2x/2 ,~ 5.8. 
a - - + 0  

Later, this result will be sharpened with the aid of the intrinsic bounds; however, we already 
get as a partial result that )2 remains bounded. 

We now discuss the case of a large parameter a (a > 1). It is convenient to write A a ( t o )  

in the form Aa(w ) = (a e -- 1)[ae/(a 2 -- 1) -- we]. The formulas (1)-(5) used before imply 

fE(a) ]grad(ffi )12 dE(a )  = 4fl21_..~. fd [a2/(a 2 -- 1) --w212~-5/2w2(l - -w  2) dw 

rE(a) f ~ d E ( a )  a 2 - 1  fd[a2 / (a  2 - 1) - w212~+l/2dw 

We compute again its limit for a ~ 0~: 

lim lena) ]grad(f~ )12 dE(a )  = 0. 

fE a) dE(a) 
Thus, the asymptotic behaviour is dominated by the second term of the estimate: 

lim f E ( a ) H 2 f ~ d E ( a )  _ _1 fd[1 - wZ]Z/~-l/Zdw 

a ~  fE(a) f ~ d E ( a )  -- 4 f d [ l _  wZ]Zg+l/Zdw" 

This yields the inequality 

1 fo[1 - wZ]2fi-l/2dto 
a l im ),2(a) < ~ f01[1 w212~+l/2dw 

for any/3 > ½. The special value in case of the parameter 13 = 1 can easily be calculated 
to be 

3 
lim ), (a) _< i-0. 

a ---~ o o  

However, the inequality holds for any/3 > ½; for/3 --+ o~ we obtain the optimal result 

l im) ,  a) < ~. 
a---+ O~ 

R e m a r k  7. Let us point out that, for/3 = 1, the integral approximation of  )~ 2 (a) is, on both 

sides a --+ O, cx~, not the best one among the extrinsic upper bounds considered, but we may 

come very close to the optimal value using the family of  functions f~. The exact formula 
holding for  all parameters 0 < a < oo is in this case: 

(2 + +  a4) + -  a4_ 3 .6)f a) 
z (a) <_ 

( /  -k- 5 a 2  -k- 5 a 4 ) -  5 a 6 f ( a )  ' 
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Fig. 1.(0 < a < 1). 

13 

where the function f (a) is given by 

f ( a ) - - ~ / l _ a  2 , a < 1, 

f ( a ) = -  ~ a r c s i n  , a > 1. 
, / a  2 - 1 

Fig. 1 (a 6 [0, 1D and Fig. 2 (a e ] l ,  oo[) give an overview of  the different extrinsic 

bounds. The lower solid line is the only known lower bound proportional to the inverse 

of the volume due to Lott and B ~ ;  the upper solid line is the well-known upper bound 

involving the integral over H 2 divided by the volume. The short dashed curve corresponds 

to/4 = ½ in our family of  functions; as seen before, this is the maximal value for/4 for 

which the curve does not remain bounded as a ~ 0. Its limit for a ~ oo is .~. Finally, the 

long dashed curve is the upper bound for/4 = 1 as discussed previously. 

4.2. Evaluation of  the intrinsic upper bound 

We now apply Theorem 2 to the el l ipsoid E(a). We can find a uniformization map 

: S 2 --+ E(a) of the form q~(x, ¢p) = (w(x), ~o). By formula (1) for ds 2 we obtain 

¢'*(dsa:)-  Aa(W(X)) f _-- w--T~(x ) [w'(x)] 2 dx: + (1 - w2(x)) d , /  



14 L A gricola, T. Friedrich /Journal of Geometry and Physics 30 (1999) 1-22 

0.~ 
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Y 

0.4" 

0 . 2 -  

Fig. 2. (1 < a < o~). 

and the condition 

qO,(ds2) = h4(x ) 4 (1 + x2) 2 {dx2 + x2 d~2} 

implies the differential equation 

a~/2(w(x) )  , 1 
i - - ~  .w = - x  (*) 

as well as the boundary conditions w(0) = 1 and w(o~) = - 1 .  The function h4(x) is then 
given by 

h4(x) = (1 - w2a(x)) (1 + x2) 2 
4x 2 ' 

where wa (x) is the unique solution of  the differential equation ( , )  depending on the pa- 

rameter a. We calculate the gradient of  ha (x) with respect to the standard metric 

4 
go = (1 + X2) 2 {dx2 + x2 d~O2} 

of  the sphere S 2 and finally obtain 

flgrad(ha)l 2 J r f l  ( w a ( x )  x 2 - 1 ~  2 
I i (a )  :=  h 2 dS2 = 2- x ~Ala/2(Wa(X)) + x 2 + 1] dx. 

s 2 0 
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Theorem 2 then provides the inequality 

4Jr I1 (a) 

k~(a) 5 vo l (E(a ) )  + v o l ( E ( a ) ) '  

The solution of the differential equation ( . )  has the symmetry w~, (x) = - w .  ( 1/x).  Indeed, 

suppose that w.  (x) is a solution and consider w* (x) = - w .  ( i / x ) .  Then w* solves again 

the differential equation ( . )  and w*(0) = -wa(o<~) = 1, w*(~¢) = -u , , , (0)  = - 1 .  This 

implies that. for any parameter 0 < a < oo, the solution w,, (x) of the equation ( . )  vanishes 

at x = 1. Consequently w . ( x )  is a decreasing function and we have 

w . ( x )  >_ 0 for 0 < x < 1, 0 < a < ~ ,  

w,,(x)  < 0 for 1 < x < oo. 0 < a < oc. 

In particular, 11 (a) may be reduced to an integral over the interval [0, 1]: 

1 

P 

= 7r / Ii (a) 
d 

0 

We study again the 

all points 0 < x < 1, we have 

1/2 V / A .  ( w . ( x ) )  = ( l - a 2 ) w Z ( x ) + a  2 > x/ l  - a 2 w . ( x ) ,  

and consequently, 

1/2 A~ (w~(x))  

; + l j  dx. 

limits for a --+ 0, oo. First we consider the case that a < 1. Then, for 

1 - wa(x)" w;,(x) _< ~ a.(x)w~,(X)l - u'a" 

We integrate this inequality on the interval [y, 1 ]. Using the fact that wa ( l )  = O, we obtain 

the estimate 

" y 2 / ~  ws(y  ) <  1 - -  , 0 < 3 '  < 1. 

I/2 
On the other hand, we have Aa (w~,(x)) < 1. This inequality implies 

W~,(X) A~/a(wa(x) )w 'a(x)  1 < 
I - w ~ , ( x )  - 1 - w 2 ( x )  x '  

and finally, 

1 - -  y2 
w . ( y )  > - 1 +  y2 '  0 _< y _< 1. 

Altogether, for any x c [0, 1], we obtain the inequalities 

1 - x  2 
< lim wa(x)  < lim wa(x)  < l - x  2 

9 - -  - -  - -  " 

1 + x -  a- -+0 a - + O  

Now we apply the following observation: let Wa be a sequence of  numbers such that 

(a) 0 < w ,  < 1; 
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(b) lima__,o wa > 0 .  

Then the sequence w a / A  1/2 with Aa = (1 -- a2)w 2 + a 2 converges to 1, i.e., 

~-)a 
l im - -  = 1. 
a--->O A 1/2 

~ a  

In our  si tuation we can conclude that 

w a ( x )  
l im --  1 
a-+O Ala/Z(wa(X)) 

and finally we are able to calculate the limit: 

1 2 

l im I1 (a) = l im rr - + dx 
a---~o a--->o x ~ Ala/2(Wa(X)) x 2 "1- 1]  

0 
1 2 1 fl( x2 - 1"~ f 

= zr x- 1 + x-7---~+ 1 ] dx = 47r (1 -q- x 2"~2: 

0 0 

Using lima--,0 vol (E(a))  ---- 2rr we obta in  

dx. 

I 
f x 3 3 

a~01-~-)~2 (a) - < 2 + 2  ( lZx2)~+  dx = -2 + l n 2  ~ 2.2. 

o 

In a similar  way we handle  the case that a > 1. The inequali t ies  (0 < x < 1) 

1 < Aa(Wa(X)) ~ a e 

allow us to prove the est imate 

1 - x e / a  1 - x 2 
< tOo(X ) < - -  

I + X e / a  - -  - -  I + X 2' 

which is valid for all 0 < x < 1 and a > 1. However,  the funct ion w/Ala/e (w) is a monotone  

decreasing funct ion for w > O. Consequent ly,  we have 

(1 - x2/a)/(1 + x 2/a) Wa(X) 
< < 1  

Aal/2(( 1 -- x2/a)/(1 q- x2/a)) - A 1 / 2 ( W a ( X )  ) - -  

and from this inequal i ty  we can deduce 

< 4a2x2/a 1 Wa(X) ~2 
A1/2(Wa(X))]  -- (1 -- a2)(1 -- x2/a) 2 + a2(1 + x2/a) 2" 

We split the integral I1 (a) into three parts: 

1 { {  Wa(X) 
I1 ( a )  = Jr - 

o x 

2x 2 ) 2  

1 + l - - - - ~ x  2 dx 
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jX3 l+ = 47r x2)--------- ~ dx + 4zr 1 
o o 1 + x  2 

l 

-t-rr -- A l /2 ,Wa,X,"  1 dx.  
0 

We calculate the last term using the differential equation for w~ (x) and obtain the value 

of  the integral. The volume vol (E (a ) )  of the ellipsoid behaves like rr2a, i.e., 

vol (E (a ) )  rr2. 
lim -- 

a---~ ~ c  a 

Therefore, we can control the asymptotic behaviour of  L~(a) for a ~ ~ :  

47r a Ii (a) a 9 - -  ZTca) _< + - -  
a vol (E (a ) )  a vol (E (a ) )  

1 
< 4  4f x3 dx + 1 

7ra zra (1 + x2) 2 2 
0 

5. The first eigenvalue of  the Dirac operator on the tube around a circle 

We consider a circle with curvature x and length L = 2zr/x.  Let r be a fixed radius and 
denote by M2(r) its tube in ~3 of  radius r, rK < 1. The induced metric on the surface 

M 2 (r) is given by the formula 

g = (1 - rx cos qg) 2 ds 2 + r 2 d~02, 

where we use the length parameter 0 < s < L for the circle and 0 _< q9 _< 2zr parametrizes 

the angle of  the tube. First of  all we calculate a uniformization 

: [0, L] x [0, A] --+ [0, L] x [0, 27r] 

of this metric on T 2. Suppose q~ is given by the condition ~(s ,  ~O) = (s, ~0(~)). Then the 

equation ~*(g)  = ha(ds 2 q- d ~  2) yields the differential equation 

~p'(~) 1 

1 - r x  cos(~o(~r)) r 

and the function h = h(s,  7t) is given by 

h 2 = r~o'(~) = 1 - r x  cos(qg(~)). 

Using the integral (a < 1) 

f dx 
1 - a cos(x) 

2 

x/1 - - a  2 

(1 + a) tg (~)~  , 
- - a r c t g (  ~ - ~ - - - ~  / 
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we obtain the solution ~0(O) 

tg ( ~ p ( ~ ) )  f l - r x  ( l v / l  _ r2x2 O )  
- -  = ~ /1 - -~ rx  tg 

Since ~0(0) maps the interval [0, A] bijectively onto [0, 27r], we conclude A = 2Jrr/ 

~/1 - r2x 2. Moreover, the function h 2 is determined by 

1 -- tg2(~o(0)/2) 
h 2 = 1 - rxcos(~o(O))  = 1 - rx  

1 + tg 2 (¢,o(0)/2) 

----- (1 - r2t¢ 2) 1 q- tgZ((1/2r)~/1 -- r2t¢ 2 O)  

1 + rx  + (1 - rx )  tgZ((1/2r)~/1 - rZx 2 O)" 

Hence, we obtain a uniformization of the metric of  the robe MZ(r) parametrized on 
[0, L] × [0, 2rrr/~/1 - rZt¢2]. The basis of  the lattice is 

( Vl = ( L , 0 ) ,  v2 = 0 '  / l _ r 2 t ¢ 2 j ,  

and thus the dual lattice has the basis 

v T =  ,0  , v ~ =  0, 2zrr ] '  

By Theorem 4 we obtain the estimate 

1( ) 
~2(t¢, r) < -~ K2EI "-[- r-------T---- e2 fr2 h2 dT2 

for the first eigenvalue of the Dirac operator on the tube M2(r)  with respect to the spin 

structure (el, e2). We compute these two integrals: 

L A A 2Jr 

fh2d 2=ffh2 s,O'dsdO=Lfr¢<O dO=Lrfd =2=rL, 
T 2 0 0 0 0 

and 

A A 

f, 1 rx c02s(~o (0)))2_~0 (O) d r  2 = -  dO = - -  ' dO 
r ~ r ( 1 - -  

T 2 0 0 

2n 

f dr 
= L r  (1 -- r~c cos(co)) 2" 

0 

Consequently, this ratio is equal to 

2~r 
fr~ (1 /h2)  dT2  = __1 f dq9 _ 1 

fT  2 h 2 dT 2 2rr (1 -- rJc cos(ep))  2 (1 - r2 t¢2)3 /2 '  
0 
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i ,e,,  

,( ,r2K2) 1 
k?(x, r) ~ -~ K281-F r- ~ 82 ( l  - - r 2 K 2 )  3/2" 

The volume vol (x, r) of  the tube equals 

vol (to, r) = 47r 2 r  
K 

and we obtain the inequality 

( l < )  
X ~ ( x , r ) v o l ( x , r )  < yg2 rxe l  + e~ , ",3,~" 

- r E  ' ,  - ( 1 - r " x " ) - / -  

Now we apply the inequality 
\ 

f '{grad (h)l 2 
X~(x,r)vol( tc ,  r) <_)~21(go)vol(T2, g o ) +  , h2 dT 2 

T: 

(*) 

to our situation. Since h 2 = r~0'(~) = 1 - rx  cos((p(~)),  we can calculate the gradient 

of  h: 

Igrad (h)l 2 r x  2 sinZ(~o(~p))(p'Op) 

h 2 4 1 - r x c o s O p ( ~ ) )  

and, therefore, we obtain 

27r f Igrad(h)12_ / sin2(~o) 7 r 2 ( ~ )  
h 2 2 rx  1 - r x  cos(~o) d~o = --rz 1 - . 

7 ̀2 0 

Then we have proved the estimate 

',( 1 --77xr2t¢2 _'~ x/q- 1 AT(x, r) vol (x, r) _< 7r 2 rKel + e2}  • 
r2g 2 

7r 2 
+ - - ( 1  -- V/I -- r2/¢2). (**) 

rK 
We discuss the inequalities ( , )  and (**) for the three non-trivial spin structures on the 

tube. For all cases, we provide a figure in which the long dashed line represents the estimate 
( , ) ,  and the short dashed line the estimate (**). The x-axis uses the variable a = rx ,  the 
y-axis is to be understood in multiples of 7r 2. For comparison matters only, we have also 

drawn the line for constant value 2. 

Case 1 (el = 1, 82 =0). In this case (see Fig. 3 )we  obtain 

? 1 
~l(x,  r)  vol (x, r) < yr-rK (1 -- r2x2) 3/2' (*) 

~ - r K  
+ - -  1 -  . (**) k~(/(, r)  vol (x, r)  < J l  -- r2tc 2 ru: 
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Fig. 3. (el = 1, e2 = 0). 

In particular, we conclude 

lim X2(x, r)  vol (x, r)  = lim xz(x, r) vol (~c, r) = 0. 
r--+O K - + 0  

/ 

: 

Case  2 (el = O, 82 =- 1). In this case (see Fig. 4) the inequalit ies  are 

X2(X, r)  VO1 (x, r)  < 
7r 2 1 

rx ~ '  

~2 
L~(x, r) vol (x, r)  ~ - - ,  

rff 

and in particular, we conclude 

lim i2(K, r)  vol (x, r) _< ~ 2  
rK--~ 1 

(*) 

(**) 

Case  3 (61 = 1 = e2). In this case we  obtain the estimates 

xz(K, r)  vol (x, r)  _< 
~2 1 

rx  (1 -- r2x2)3/2'  

k~(x, r)  vol (x, r)  < 
~2 1 

rx  ~/1 -- r2g 2 + r-x-x 

(*) 

(**) 
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Fig. 4. (el = 0, e2 = 1). 

Let us compare these estimates obtained via the uniformization of the tube with the estimate 
using the embedding M2(r)  C R 3. Notice that the embedding induces the spin structure 

el = 1 = e2 on the tube. Then we obtain 

f rr 2 1 k~(K,r) vol(K,r) < H2dM2(r) < ( * * * )  
- -  - -  E K e '  

M2(r)  

the extrinsic bound (drawn as a solid line in Fig. 5) for k~ is better than the intrinsic i.e., 

estimates. 

Case 4 (el = 0 = e2). In this case k0(D) = 0 is an eigenvalue of the Dirac oper- 
ator and Theorem 3 yields the following estimate for the first non-trivial eigenvalue k~ 

(K, r): 

{ 1 } f2> d~°/(1-rxc°s~p)4 
k2(K,r)  _< min 2K 2, ~ f2~r d~o/(-----~ ~- r~ cosgo) ~ '  

In particular, we obtain 

lim k~(x, r) = 0, lim k2(K, r)  < 2x 2 
,'<--~- 0 r--+O 
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Fig. 5. (el = 1 = e2). 

and  

l im  12(x ,  r )  vol  (x,  r)  = 0. 
r.~--~O 
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